Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7-2\left(9x^{2}-6x+1\right)=47
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
7-18x^{2}+12x-2=47
Use the distributive property to multiply -2 by 9x^{2}-6x+1.
5-18x^{2}+12x=47
Subtract 2 from 7 to get 5.
5-18x^{2}+12x-47=0
Subtract 47 from both sides.
-42-18x^{2}+12x=0
Subtract 47 from 5 to get -42.
-18x^{2}+12x-42=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-18\right)\left(-42\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 12 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-18\right)\left(-42\right)}}{2\left(-18\right)}
Square 12.
x=\frac{-12±\sqrt{144+72\left(-42\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-12±\sqrt{144-3024}}{2\left(-18\right)}
Multiply 72 times -42.
x=\frac{-12±\sqrt{-2880}}{2\left(-18\right)}
Add 144 to -3024.
x=\frac{-12±24\sqrt{5}i}{2\left(-18\right)}
Take the square root of -2880.
x=\frac{-12±24\sqrt{5}i}{-36}
Multiply 2 times -18.
x=\frac{-12+24\sqrt{5}i}{-36}
Now solve the equation x=\frac{-12±24\sqrt{5}i}{-36} when ± is plus. Add -12 to 24i\sqrt{5}.
x=\frac{-2\sqrt{5}i+1}{3}
Divide -12+24i\sqrt{5} by -36.
x=\frac{-24\sqrt{5}i-12}{-36}
Now solve the equation x=\frac{-12±24\sqrt{5}i}{-36} when ± is minus. Subtract 24i\sqrt{5} from -12.
x=\frac{1+2\sqrt{5}i}{3}
Divide -12-24i\sqrt{5} by -36.
x=\frac{-2\sqrt{5}i+1}{3} x=\frac{1+2\sqrt{5}i}{3}
The equation is now solved.
7-2\left(9x^{2}-6x+1\right)=47
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-1\right)^{2}.
7-18x^{2}+12x-2=47
Use the distributive property to multiply -2 by 9x^{2}-6x+1.
5-18x^{2}+12x=47
Subtract 2 from 7 to get 5.
-18x^{2}+12x=47-5
Subtract 5 from both sides.
-18x^{2}+12x=42
Subtract 5 from 47 to get 42.
\frac{-18x^{2}+12x}{-18}=\frac{42}{-18}
Divide both sides by -18.
x^{2}+\frac{12}{-18}x=\frac{42}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{2}{3}x=\frac{42}{-18}
Reduce the fraction \frac{12}{-18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{2}{3}x=-\frac{7}{3}
Reduce the fraction \frac{42}{-18} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{7}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{20}{9}
Add -\frac{7}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{20}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{2\sqrt{5}i}{3} x-\frac{1}{3}=-\frac{2\sqrt{5}i}{3}
Simplify.
x=\frac{1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i+1}{3}
Add \frac{1}{3} to both sides of the equation.