Solve for x
x=\frac{3y+7}{10}
Solve for y
y=\frac{10x-7}{3}
Graph
Share
Copied to clipboard
7-3y-4x=6\left(x-y\right)
To find the opposite of 3y+4x, find the opposite of each term.
7-3y-4x=6x-6y
Use the distributive property to multiply 6 by x-y.
7-3y-4x-6x=-6y
Subtract 6x from both sides.
7-3y-10x=-6y
Combine -4x and -6x to get -10x.
-3y-10x=-6y-7
Subtract 7 from both sides.
-10x=-6y-7+3y
Add 3y to both sides.
-10x=-3y-7
Combine -6y and 3y to get -3y.
\frac{-10x}{-10}=\frac{-3y-7}{-10}
Divide both sides by -10.
x=\frac{-3y-7}{-10}
Dividing by -10 undoes the multiplication by -10.
x=\frac{3y+7}{10}
Divide -3y-7 by -10.
7-3y-4x=6\left(x-y\right)
To find the opposite of 3y+4x, find the opposite of each term.
7-3y-4x=6x-6y
Use the distributive property to multiply 6 by x-y.
7-3y-4x+6y=6x
Add 6y to both sides.
7+3y-4x=6x
Combine -3y and 6y to get 3y.
3y-4x=6x-7
Subtract 7 from both sides.
3y=6x-7+4x
Add 4x to both sides.
3y=10x-7
Combine 6x and 4x to get 10x.
\frac{3y}{3}=\frac{10x-7}{3}
Divide both sides by 3.
y=\frac{10x-7}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}