Evaluate
\frac{91}{8}=11.375
Factor
\frac{7 \cdot 13}{2 ^ {3}} = 11\frac{3}{8} = 11.375
Share
Copied to clipboard
7-\left(-\frac{8+1}{8}\right)+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
Multiply 1 and 8 to get 8.
7-\left(-\frac{9}{8}\right)+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
Add 8 and 1 to get 9.
7+\frac{9}{8}+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
The opposite of -\frac{9}{8} is \frac{9}{8}.
\frac{56}{8}+\frac{9}{8}+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
Convert 7 to fraction \frac{56}{8}.
\frac{56+9}{8}+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
Since \frac{56}{8} and \frac{9}{8} have the same denominator, add them by adding their numerators.
\frac{65}{8}+\frac{2\times 2+1}{2}-\left(-\frac{3}{4}\right)
Add 56 and 9 to get 65.
\frac{65}{8}+\frac{4+1}{2}-\left(-\frac{3}{4}\right)
Multiply 2 and 2 to get 4.
\frac{65}{8}+\frac{5}{2}-\left(-\frac{3}{4}\right)
Add 4 and 1 to get 5.
\frac{65}{8}+\frac{20}{8}-\left(-\frac{3}{4}\right)
Least common multiple of 8 and 2 is 8. Convert \frac{65}{8} and \frac{5}{2} to fractions with denominator 8.
\frac{65+20}{8}-\left(-\frac{3}{4}\right)
Since \frac{65}{8} and \frac{20}{8} have the same denominator, add them by adding their numerators.
\frac{85}{8}-\left(-\frac{3}{4}\right)
Add 65 and 20 to get 85.
\frac{85}{8}+\frac{3}{4}
The opposite of -\frac{3}{4} is \frac{3}{4}.
\frac{85}{8}+\frac{6}{8}
Least common multiple of 8 and 4 is 8. Convert \frac{85}{8} and \frac{3}{4} to fractions with denominator 8.
\frac{85+6}{8}
Since \frac{85}{8} and \frac{6}{8} have the same denominator, add them by adding their numerators.
\frac{91}{8}
Add 85 and 6 to get 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}