Solve for x
x<\frac{61}{26}
Graph
Share
Copied to clipboard
70-5\times 5x-10+2>x+1
Multiply both sides of the equation by 10, the least common multiple of 2,5,10. Since 10 is positive, the inequality direction remains the same.
70-25x-10+2>x+1
Multiply -5 and 5 to get -25.
60-25x+2>x+1
Subtract 10 from 70 to get 60.
62-25x>x+1
Add 60 and 2 to get 62.
62-25x-x>1
Subtract x from both sides.
62-26x>1
Combine -25x and -x to get -26x.
-26x>1-62
Subtract 62 from both sides.
-26x>-61
Subtract 62 from 1 to get -61.
x<\frac{-61}{-26}
Divide both sides by -26. Since -26 is negative, the inequality direction is changed.
x<\frac{61}{26}
Fraction \frac{-61}{-26} can be simplified to \frac{61}{26} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}