Solve for x
x = -\frac{15}{4} = -3\frac{3}{4} = -3.75
Graph
Share
Copied to clipboard
7x+42=3\left(x+9\right)
Use the distributive property to multiply 7 by x+6.
7x+42=3x+27
Use the distributive property to multiply 3 by x+9.
7x+42-3x=27
Subtract 3x from both sides.
4x+42=27
Combine 7x and -3x to get 4x.
4x=27-42
Subtract 42 from both sides.
4x=-15
Subtract 42 from 27 to get -15.
x=\frac{-15}{4}
Divide both sides by 4.
x=-\frac{15}{4}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}