Solve for v
v=-\frac{8}{9}\approx -0.888888889
Share
Copied to clipboard
7v+56=-5\left(3v-8\right)+4v
Use the distributive property to multiply 7 by v+8.
7v+56=-15v+40+4v
Use the distributive property to multiply -5 by 3v-8.
7v+56=-11v+40
Combine -15v and 4v to get -11v.
7v+56+11v=40
Add 11v to both sides.
18v+56=40
Combine 7v and 11v to get 18v.
18v=40-56
Subtract 56 from both sides.
18v=-16
Subtract 56 from 40 to get -16.
v=\frac{-16}{18}
Divide both sides by 18.
v=-\frac{8}{9}
Reduce the fraction \frac{-16}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}