Solve for k
k = -\frac{11}{4} = -2\frac{3}{4} = -2.75
Share
Copied to clipboard
7k+21=46-3\left(12-k\right)
Use the distributive property to multiply 7 by k+3.
7k+21=46-36+3k
Use the distributive property to multiply -3 by 12-k.
7k+21=10+3k
Subtract 36 from 46 to get 10.
7k+21-3k=10
Subtract 3k from both sides.
4k+21=10
Combine 7k and -3k to get 4k.
4k=10-21
Subtract 21 from both sides.
4k=-11
Subtract 21 from 10 to get -11.
k=\frac{-11}{4}
Divide both sides by 4.
k=-\frac{11}{4}
Fraction \frac{-11}{4} can be rewritten as -\frac{11}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}