Solve for t
t = -\frac{41}{22} = -1\frac{19}{22} \approx -1.863636364
Quiz
Linear Equation
7 ( 6 + 3 t ) + ( - \frac { 1 } { 2 } ) - 2 t - ( - \frac { 7 } { 2 } - 3 t ) = 4
Share
Copied to clipboard
42+21t-\frac{1}{2}-2t-\left(-\frac{7}{2}-3t\right)=4
Use the distributive property to multiply 7 by 6+3t.
\frac{84}{2}+21t-\frac{1}{2}-2t-\left(-\frac{7}{2}-3t\right)=4
Convert 42 to fraction \frac{84}{2}.
\frac{84-1}{2}+21t-2t-\left(-\frac{7}{2}-3t\right)=4
Since \frac{84}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{83}{2}+21t-2t-\left(-\frac{7}{2}-3t\right)=4
Subtract 1 from 84 to get 83.
\frac{83}{2}+19t-\left(-\frac{7}{2}-3t\right)=4
Combine 21t and -2t to get 19t.
\frac{83}{2}+19t-\left(-\frac{7}{2}\right)-\left(-3t\right)=4
To find the opposite of -\frac{7}{2}-3t, find the opposite of each term.
\frac{83}{2}+19t+\frac{7}{2}-\left(-3t\right)=4
The opposite of -\frac{7}{2} is \frac{7}{2}.
\frac{83}{2}+19t+\frac{7}{2}+3t=4
The opposite of -3t is 3t.
\frac{83+7}{2}+19t+3t=4
Since \frac{83}{2} and \frac{7}{2} have the same denominator, add them by adding their numerators.
\frac{90}{2}+19t+3t=4
Add 83 and 7 to get 90.
45+19t+3t=4
Divide 90 by 2 to get 45.
45+22t=4
Combine 19t and 3t to get 22t.
22t=4-45
Subtract 45 from both sides.
22t=-41
Subtract 45 from 4 to get -41.
t=\frac{-41}{22}
Divide both sides by 22.
t=-\frac{41}{22}
Fraction \frac{-41}{22} can be rewritten as -\frac{41}{22} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}