Solve for x
x\leq \frac{16}{7}
Graph
Share
Copied to clipboard
3-x\geq \frac{5}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
-x\geq \frac{5}{7}-3
Subtract 3 from both sides.
-x\geq \frac{5}{7}-\frac{21}{7}
Convert 3 to fraction \frac{21}{7}.
-x\geq \frac{5-21}{7}
Since \frac{5}{7} and \frac{21}{7} have the same denominator, subtract them by subtracting their numerators.
-x\geq -\frac{16}{7}
Subtract 21 from 5 to get -16.
x\leq \frac{-\frac{16}{7}}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
x\leq \frac{-16}{7\left(-1\right)}
Express \frac{-\frac{16}{7}}{-1} as a single fraction.
x\leq \frac{-16}{-7}
Multiply 7 and -1 to get -7.
x\leq \frac{16}{7}
Fraction \frac{-16}{-7} can be simplified to \frac{16}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}