Solve for n
n = \frac{59}{7} = 8\frac{3}{7} \approx 8.428571429
Share
Copied to clipboard
2-\frac{28+7}{-7}-n=-\frac{10}{7}
Divide both sides by 7.
14+28+7-7n=-10
Multiply both sides of the equation by 7, the least common multiple of -7,7.
42+7-7n=-10
Add 14 and 28 to get 42.
49-7n=-10
Add 42 and 7 to get 49.
-7n=-10-49
Subtract 49 from both sides.
-7n=-59
Subtract 49 from -10 to get -59.
n=\frac{-59}{-7}
Divide both sides by -7.
n=\frac{59}{7}
Fraction \frac{-59}{-7} can be simplified to \frac{59}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}