Factor
\left(7x-15\right)\left(x+1\right)
Evaluate
\left(7x-15\right)\left(x+1\right)
Graph
Share
Copied to clipboard
a+b=-8 ab=7\left(-15\right)=-105
Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-105 3,-35 5,-21 7,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Calculate the sum for each pair.
a=-15 b=7
The solution is the pair that gives sum -8.
\left(7x^{2}-15x\right)+\left(7x-15\right)
Rewrite 7x^{2}-8x-15 as \left(7x^{2}-15x\right)+\left(7x-15\right).
x\left(7x-15\right)+7x-15
Factor out x in 7x^{2}-15x.
\left(7x-15\right)\left(x+1\right)
Factor out common term 7x-15 by using distributive property.
7x^{2}-8x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7\left(-15\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7\left(-15\right)}}{2\times 7}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-28\left(-15\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-8\right)±\sqrt{64+420}}{2\times 7}
Multiply -28 times -15.
x=\frac{-\left(-8\right)±\sqrt{484}}{2\times 7}
Add 64 to 420.
x=\frac{-\left(-8\right)±22}{2\times 7}
Take the square root of 484.
x=\frac{8±22}{2\times 7}
The opposite of -8 is 8.
x=\frac{8±22}{14}
Multiply 2 times 7.
x=\frac{30}{14}
Now solve the equation x=\frac{8±22}{14} when ± is plus. Add 8 to 22.
x=\frac{15}{7}
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{14}{14}
Now solve the equation x=\frac{8±22}{14} when ± is minus. Subtract 22 from 8.
x=-1
Divide -14 by 14.
7x^{2}-8x-15=7\left(x-\frac{15}{7}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15}{7} for x_{1} and -1 for x_{2}.
7x^{2}-8x-15=7\left(x-\frac{15}{7}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
7x^{2}-8x-15=7\times \frac{7x-15}{7}\left(x+1\right)
Subtract \frac{15}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
7x^{2}-8x-15=\left(7x-15\right)\left(x+1\right)
Cancel out 7, the greatest common factor in 7 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}