Solve for x
x = \frac{\sqrt{1271} + 40}{7} \approx 10.807298134
x=\frac{40-\sqrt{1271}}{7}\approx 0.621273294
Graph
Share
Copied to clipboard
7x^{2}-80x+47=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 7\times 47}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -80 for b, and 47 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 7\times 47}}{2\times 7}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-28\times 47}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-80\right)±\sqrt{6400-1316}}{2\times 7}
Multiply -28 times 47.
x=\frac{-\left(-80\right)±\sqrt{5084}}{2\times 7}
Add 6400 to -1316.
x=\frac{-\left(-80\right)±2\sqrt{1271}}{2\times 7}
Take the square root of 5084.
x=\frac{80±2\sqrt{1271}}{2\times 7}
The opposite of -80 is 80.
x=\frac{80±2\sqrt{1271}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{1271}+80}{14}
Now solve the equation x=\frac{80±2\sqrt{1271}}{14} when ± is plus. Add 80 to 2\sqrt{1271}.
x=\frac{\sqrt{1271}+40}{7}
Divide 80+2\sqrt{1271} by 14.
x=\frac{80-2\sqrt{1271}}{14}
Now solve the equation x=\frac{80±2\sqrt{1271}}{14} when ± is minus. Subtract 2\sqrt{1271} from 80.
x=\frac{40-\sqrt{1271}}{7}
Divide 80-2\sqrt{1271} by 14.
x=\frac{\sqrt{1271}+40}{7} x=\frac{40-\sqrt{1271}}{7}
The equation is now solved.
7x^{2}-80x+47=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-80x+47-47=-47
Subtract 47 from both sides of the equation.
7x^{2}-80x=-47
Subtracting 47 from itself leaves 0.
\frac{7x^{2}-80x}{7}=-\frac{47}{7}
Divide both sides by 7.
x^{2}-\frac{80}{7}x=-\frac{47}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{80}{7}x+\left(-\frac{40}{7}\right)^{2}=-\frac{47}{7}+\left(-\frac{40}{7}\right)^{2}
Divide -\frac{80}{7}, the coefficient of the x term, by 2 to get -\frac{40}{7}. Then add the square of -\frac{40}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{80}{7}x+\frac{1600}{49}=-\frac{47}{7}+\frac{1600}{49}
Square -\frac{40}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{80}{7}x+\frac{1600}{49}=\frac{1271}{49}
Add -\frac{47}{7} to \frac{1600}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{40}{7}\right)^{2}=\frac{1271}{49}
Factor x^{2}-\frac{80}{7}x+\frac{1600}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{40}{7}\right)^{2}}=\sqrt{\frac{1271}{49}}
Take the square root of both sides of the equation.
x-\frac{40}{7}=\frac{\sqrt{1271}}{7} x-\frac{40}{7}=-\frac{\sqrt{1271}}{7}
Simplify.
x=\frac{\sqrt{1271}+40}{7} x=\frac{40-\sqrt{1271}}{7}
Add \frac{40}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}