Factor
\left(x-12\right)\left(7x+10\right)
Evaluate
\left(x-12\right)\left(7x+10\right)
Graph
Share
Copied to clipboard
a+b=-74 ab=7\left(-120\right)=-840
Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-120. To find a and b, set up a system to be solved.
1,-840 2,-420 3,-280 4,-210 5,-168 6,-140 7,-120 8,-105 10,-84 12,-70 14,-60 15,-56 20,-42 21,-40 24,-35 28,-30
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -840.
1-840=-839 2-420=-418 3-280=-277 4-210=-206 5-168=-163 6-140=-134 7-120=-113 8-105=-97 10-84=-74 12-70=-58 14-60=-46 15-56=-41 20-42=-22 21-40=-19 24-35=-11 28-30=-2
Calculate the sum for each pair.
a=-84 b=10
The solution is the pair that gives sum -74.
\left(7x^{2}-84x\right)+\left(10x-120\right)
Rewrite 7x^{2}-74x-120 as \left(7x^{2}-84x\right)+\left(10x-120\right).
7x\left(x-12\right)+10\left(x-12\right)
Factor out 7x in the first and 10 in the second group.
\left(x-12\right)\left(7x+10\right)
Factor out common term x-12 by using distributive property.
7x^{2}-74x-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}-4\times 7\left(-120\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-74\right)±\sqrt{5476-4\times 7\left(-120\right)}}{2\times 7}
Square -74.
x=\frac{-\left(-74\right)±\sqrt{5476-28\left(-120\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-74\right)±\sqrt{5476+3360}}{2\times 7}
Multiply -28 times -120.
x=\frac{-\left(-74\right)±\sqrt{8836}}{2\times 7}
Add 5476 to 3360.
x=\frac{-\left(-74\right)±94}{2\times 7}
Take the square root of 8836.
x=\frac{74±94}{2\times 7}
The opposite of -74 is 74.
x=\frac{74±94}{14}
Multiply 2 times 7.
x=\frac{168}{14}
Now solve the equation x=\frac{74±94}{14} when ± is plus. Add 74 to 94.
x=12
Divide 168 by 14.
x=-\frac{20}{14}
Now solve the equation x=\frac{74±94}{14} when ± is minus. Subtract 94 from 74.
x=-\frac{10}{7}
Reduce the fraction \frac{-20}{14} to lowest terms by extracting and canceling out 2.
7x^{2}-74x-120=7\left(x-12\right)\left(x-\left(-\frac{10}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 12 for x_{1} and -\frac{10}{7} for x_{2}.
7x^{2}-74x-120=7\left(x-12\right)\left(x+\frac{10}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
7x^{2}-74x-120=7\left(x-12\right)\times \frac{7x+10}{7}
Add \frac{10}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
7x^{2}-74x-120=\left(x-12\right)\left(7x+10\right)
Cancel out 7, the greatest common factor in 7 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}