Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-62x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-62\right)±\sqrt{\left(-62\right)^{2}-4\times 7\left(-7\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -62 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-62\right)±\sqrt{3844-4\times 7\left(-7\right)}}{2\times 7}
Square -62.
x=\frac{-\left(-62\right)±\sqrt{3844-28\left(-7\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-62\right)±\sqrt{3844+196}}{2\times 7}
Multiply -28 times -7.
x=\frac{-\left(-62\right)±\sqrt{4040}}{2\times 7}
Add 3844 to 196.
x=\frac{-\left(-62\right)±2\sqrt{1010}}{2\times 7}
Take the square root of 4040.
x=\frac{62±2\sqrt{1010}}{2\times 7}
The opposite of -62 is 62.
x=\frac{62±2\sqrt{1010}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{1010}+62}{14}
Now solve the equation x=\frac{62±2\sqrt{1010}}{14} when ± is plus. Add 62 to 2\sqrt{1010}.
x=\frac{\sqrt{1010}+31}{7}
Divide 62+2\sqrt{1010} by 14.
x=\frac{62-2\sqrt{1010}}{14}
Now solve the equation x=\frac{62±2\sqrt{1010}}{14} when ± is minus. Subtract 2\sqrt{1010} from 62.
x=\frac{31-\sqrt{1010}}{7}
Divide 62-2\sqrt{1010} by 14.
x=\frac{\sqrt{1010}+31}{7} x=\frac{31-\sqrt{1010}}{7}
The equation is now solved.
7x^{2}-62x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-62x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
7x^{2}-62x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
7x^{2}-62x=7
Subtract -7 from 0.
\frac{7x^{2}-62x}{7}=\frac{7}{7}
Divide both sides by 7.
x^{2}-\frac{62}{7}x=\frac{7}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{62}{7}x=1
Divide 7 by 7.
x^{2}-\frac{62}{7}x+\left(-\frac{31}{7}\right)^{2}=1+\left(-\frac{31}{7}\right)^{2}
Divide -\frac{62}{7}, the coefficient of the x term, by 2 to get -\frac{31}{7}. Then add the square of -\frac{31}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{62}{7}x+\frac{961}{49}=1+\frac{961}{49}
Square -\frac{31}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{62}{7}x+\frac{961}{49}=\frac{1010}{49}
Add 1 to \frac{961}{49}.
\left(x-\frac{31}{7}\right)^{2}=\frac{1010}{49}
Factor x^{2}-\frac{62}{7}x+\frac{961}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{7}\right)^{2}}=\sqrt{\frac{1010}{49}}
Take the square root of both sides of the equation.
x-\frac{31}{7}=\frac{\sqrt{1010}}{7} x-\frac{31}{7}=-\frac{\sqrt{1010}}{7}
Simplify.
x=\frac{\sqrt{1010}+31}{7} x=\frac{31-\sqrt{1010}}{7}
Add \frac{31}{7} to both sides of the equation.