Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-55x-255=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 7\left(-255\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 7\left(-255\right)}}{2\times 7}
Square -55.
x=\frac{-\left(-55\right)±\sqrt{3025-28\left(-255\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-55\right)±\sqrt{3025+7140}}{2\times 7}
Multiply -28 times -255.
x=\frac{-\left(-55\right)±\sqrt{10165}}{2\times 7}
Add 3025 to 7140.
x=\frac{55±\sqrt{10165}}{2\times 7}
The opposite of -55 is 55.
x=\frac{55±\sqrt{10165}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{10165}+55}{14}
Now solve the equation x=\frac{55±\sqrt{10165}}{14} when ± is plus. Add 55 to \sqrt{10165}.
x=\frac{55-\sqrt{10165}}{14}
Now solve the equation x=\frac{55±\sqrt{10165}}{14} when ± is minus. Subtract \sqrt{10165} from 55.
7x^{2}-55x-255=7\left(x-\frac{\sqrt{10165}+55}{14}\right)\left(x-\frac{55-\sqrt{10165}}{14}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{55+\sqrt{10165}}{14} for x_{1} and \frac{55-\sqrt{10165}}{14} for x_{2}.