Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-37 ab=7\times 10=70
Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx+10. To find a and b, set up a system to be solved.
-1,-70 -2,-35 -5,-14 -7,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 70.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
Calculate the sum for each pair.
a=-35 b=-2
The solution is the pair that gives sum -37.
\left(7x^{2}-35x\right)+\left(-2x+10\right)
Rewrite 7x^{2}-37x+10 as \left(7x^{2}-35x\right)+\left(-2x+10\right).
7x\left(x-5\right)-2\left(x-5\right)
Factor out 7x in the first and -2 in the second group.
\left(x-5\right)\left(7x-2\right)
Factor out common term x-5 by using distributive property.
7x^{2}-37x+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 7\times 10}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 7\times 10}}{2\times 7}
Square -37.
x=\frac{-\left(-37\right)±\sqrt{1369-28\times 10}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-37\right)±\sqrt{1369-280}}{2\times 7}
Multiply -28 times 10.
x=\frac{-\left(-37\right)±\sqrt{1089}}{2\times 7}
Add 1369 to -280.
x=\frac{-\left(-37\right)±33}{2\times 7}
Take the square root of 1089.
x=\frac{37±33}{2\times 7}
The opposite of -37 is 37.
x=\frac{37±33}{14}
Multiply 2 times 7.
x=\frac{70}{14}
Now solve the equation x=\frac{37±33}{14} when ± is plus. Add 37 to 33.
x=5
Divide 70 by 14.
x=\frac{4}{14}
Now solve the equation x=\frac{37±33}{14} when ± is minus. Subtract 33 from 37.
x=\frac{2}{7}
Reduce the fraction \frac{4}{14} to lowest terms by extracting and canceling out 2.
7x^{2}-37x+10=7\left(x-5\right)\left(x-\frac{2}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and \frac{2}{7} for x_{2}.
7x^{2}-37x+10=7\left(x-5\right)\times \frac{7x-2}{7}
Subtract \frac{2}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
7x^{2}-37x+10=\left(x-5\right)\left(7x-2\right)
Cancel out 7, the greatest common factor in 7 and 7.