Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-2x-70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 7\left(-70\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 7\left(-70\right)}}{2\times 7}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-28\left(-70\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-2\right)±\sqrt{4+1960}}{2\times 7}
Multiply -28 times -70.
x=\frac{-\left(-2\right)±\sqrt{1964}}{2\times 7}
Add 4 to 1960.
x=\frac{-\left(-2\right)±2\sqrt{491}}{2\times 7}
Take the square root of 1964.
x=\frac{2±2\sqrt{491}}{2\times 7}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{491}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{491}+2}{14}
Now solve the equation x=\frac{2±2\sqrt{491}}{14} when ± is plus. Add 2 to 2\sqrt{491}.
x=\frac{\sqrt{491}+1}{7}
Divide 2+2\sqrt{491} by 14.
x=\frac{2-2\sqrt{491}}{14}
Now solve the equation x=\frac{2±2\sqrt{491}}{14} when ± is minus. Subtract 2\sqrt{491} from 2.
x=\frac{1-\sqrt{491}}{7}
Divide 2-2\sqrt{491} by 14.
7x^{2}-2x-70=7\left(x-\frac{\sqrt{491}+1}{7}\right)\left(x-\frac{1-\sqrt{491}}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{491}}{7} for x_{1} and \frac{1-\sqrt{491}}{7} for x_{2}.