Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+x-120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 7\left(-120\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\times 7\left(-120\right)}}{2\times 7}
Square 1.
x=\frac{-1±\sqrt{1-28\left(-120\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-1±\sqrt{1+3360}}{2\times 7}
Multiply -28 times -120.
x=\frac{-1±\sqrt{3361}}{2\times 7}
Add 1 to 3360.
x=\frac{-1±\sqrt{3361}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{3361}-1}{14}
Now solve the equation x=\frac{-1±\sqrt{3361}}{14} when ± is plus. Add -1 to \sqrt{3361}.
x=\frac{-\sqrt{3361}-1}{14}
Now solve the equation x=\frac{-1±\sqrt{3361}}{14} when ± is minus. Subtract \sqrt{3361} from -1.
7x^{2}+x-120=7\left(x-\frac{\sqrt{3361}-1}{14}\right)\left(x-\frac{-\sqrt{3361}-1}{14}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{3361}}{14} for x_{1} and \frac{-1-\sqrt{3361}}{14} for x_{2}.