Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+8x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 7\left(-2\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 7\left(-2\right)}}{2\times 7}
Square 8.
x=\frac{-8±\sqrt{64-28\left(-2\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-8±\sqrt{64+56}}{2\times 7}
Multiply -28 times -2.
x=\frac{-8±\sqrt{120}}{2\times 7}
Add 64 to 56.
x=\frac{-8±2\sqrt{30}}{2\times 7}
Take the square root of 120.
x=\frac{-8±2\sqrt{30}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{30}-8}{14}
Now solve the equation x=\frac{-8±2\sqrt{30}}{14} when ± is plus. Add -8 to 2\sqrt{30}.
x=\frac{\sqrt{30}-4}{7}
Divide -8+2\sqrt{30} by 14.
x=\frac{-2\sqrt{30}-8}{14}
Now solve the equation x=\frac{-8±2\sqrt{30}}{14} when ± is minus. Subtract 2\sqrt{30} from -8.
x=\frac{-\sqrt{30}-4}{7}
Divide -8-2\sqrt{30} by 14.
7x^{2}+8x-2=7\left(x-\frac{\sqrt{30}-4}{7}\right)\left(x-\frac{-\sqrt{30}-4}{7}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-4+\sqrt{30}}{7} for x_{1} and \frac{-4-\sqrt{30}}{7} for x_{2}.