Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+5x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 7\times 3}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 5 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 7\times 3}}{2\times 7}
Square 5.
x=\frac{-5±\sqrt{25-28\times 3}}{2\times 7}
Multiply -4 times 7.
x=\frac{-5±\sqrt{25-84}}{2\times 7}
Multiply -28 times 3.
x=\frac{-5±\sqrt{-59}}{2\times 7}
Add 25 to -84.
x=\frac{-5±\sqrt{59}i}{2\times 7}
Take the square root of -59.
x=\frac{-5±\sqrt{59}i}{14}
Multiply 2 times 7.
x=\frac{-5+\sqrt{59}i}{14}
Now solve the equation x=\frac{-5±\sqrt{59}i}{14} when ± is plus. Add -5 to i\sqrt{59}.
x=\frac{-\sqrt{59}i-5}{14}
Now solve the equation x=\frac{-5±\sqrt{59}i}{14} when ± is minus. Subtract i\sqrt{59} from -5.
x=\frac{-5+\sqrt{59}i}{14} x=\frac{-\sqrt{59}i-5}{14}
The equation is now solved.
7x^{2}+5x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+5x+3-3=-3
Subtract 3 from both sides of the equation.
7x^{2}+5x=-3
Subtracting 3 from itself leaves 0.
\frac{7x^{2}+5x}{7}=-\frac{3}{7}
Divide both sides by 7.
x^{2}+\frac{5}{7}x=-\frac{3}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{5}{7}x+\left(\frac{5}{14}\right)^{2}=-\frac{3}{7}+\left(\frac{5}{14}\right)^{2}
Divide \frac{5}{7}, the coefficient of the x term, by 2 to get \frac{5}{14}. Then add the square of \frac{5}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{3}{7}+\frac{25}{196}
Square \frac{5}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{7}x+\frac{25}{196}=-\frac{59}{196}
Add -\frac{3}{7} to \frac{25}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{14}\right)^{2}=-\frac{59}{196}
Factor x^{2}+\frac{5}{7}x+\frac{25}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{14}\right)^{2}}=\sqrt{-\frac{59}{196}}
Take the square root of both sides of the equation.
x+\frac{5}{14}=\frac{\sqrt{59}i}{14} x+\frac{5}{14}=-\frac{\sqrt{59}i}{14}
Simplify.
x=\frac{-5+\sqrt{59}i}{14} x=\frac{-\sqrt{59}i-5}{14}
Subtract \frac{5}{14} from both sides of the equation.