Solve for x
x=\frac{9\sqrt{11}-24}{7}\approx 0.835660445
x=\frac{-9\sqrt{11}-24}{7}\approx -7.692803302
Graph
Share
Copied to clipboard
7x^{2}+48x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\times 7\left(-45\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 48 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 7\left(-45\right)}}{2\times 7}
Square 48.
x=\frac{-48±\sqrt{2304-28\left(-45\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-48±\sqrt{2304+1260}}{2\times 7}
Multiply -28 times -45.
x=\frac{-48±\sqrt{3564}}{2\times 7}
Add 2304 to 1260.
x=\frac{-48±18\sqrt{11}}{2\times 7}
Take the square root of 3564.
x=\frac{-48±18\sqrt{11}}{14}
Multiply 2 times 7.
x=\frac{18\sqrt{11}-48}{14}
Now solve the equation x=\frac{-48±18\sqrt{11}}{14} when ± is plus. Add -48 to 18\sqrt{11}.
x=\frac{9\sqrt{11}-24}{7}
Divide -48+18\sqrt{11} by 14.
x=\frac{-18\sqrt{11}-48}{14}
Now solve the equation x=\frac{-48±18\sqrt{11}}{14} when ± is minus. Subtract 18\sqrt{11} from -48.
x=\frac{-9\sqrt{11}-24}{7}
Divide -48-18\sqrt{11} by 14.
x=\frac{9\sqrt{11}-24}{7} x=\frac{-9\sqrt{11}-24}{7}
The equation is now solved.
7x^{2}+48x-45=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+48x-45-\left(-45\right)=-\left(-45\right)
Add 45 to both sides of the equation.
7x^{2}+48x=-\left(-45\right)
Subtracting -45 from itself leaves 0.
7x^{2}+48x=45
Subtract -45 from 0.
\frac{7x^{2}+48x}{7}=\frac{45}{7}
Divide both sides by 7.
x^{2}+\frac{48}{7}x=\frac{45}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{48}{7}x+\left(\frac{24}{7}\right)^{2}=\frac{45}{7}+\left(\frac{24}{7}\right)^{2}
Divide \frac{48}{7}, the coefficient of the x term, by 2 to get \frac{24}{7}. Then add the square of \frac{24}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{48}{7}x+\frac{576}{49}=\frac{45}{7}+\frac{576}{49}
Square \frac{24}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{48}{7}x+\frac{576}{49}=\frac{891}{49}
Add \frac{45}{7} to \frac{576}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{24}{7}\right)^{2}=\frac{891}{49}
Factor x^{2}+\frac{48}{7}x+\frac{576}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{24}{7}\right)^{2}}=\sqrt{\frac{891}{49}}
Take the square root of both sides of the equation.
x+\frac{24}{7}=\frac{9\sqrt{11}}{7} x+\frac{24}{7}=-\frac{9\sqrt{11}}{7}
Simplify.
x=\frac{9\sqrt{11}-24}{7} x=\frac{-9\sqrt{11}-24}{7}
Subtract \frac{24}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}