Factor
\left(x-2\right)\left(7x+17\right)
Evaluate
\left(x-2\right)\left(7x+17\right)
Graph
Share
Copied to clipboard
a+b=3 ab=7\left(-34\right)=-238
Factor the expression by grouping. First, the expression needs to be rewritten as 7x^{2}+ax+bx-34. To find a and b, set up a system to be solved.
-1,238 -2,119 -7,34 -14,17
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -238.
-1+238=237 -2+119=117 -7+34=27 -14+17=3
Calculate the sum for each pair.
a=-14 b=17
The solution is the pair that gives sum 3.
\left(7x^{2}-14x\right)+\left(17x-34\right)
Rewrite 7x^{2}+3x-34 as \left(7x^{2}-14x\right)+\left(17x-34\right).
7x\left(x-2\right)+17\left(x-2\right)
Factor out 7x in the first and 17 in the second group.
\left(x-2\right)\left(7x+17\right)
Factor out common term x-2 by using distributive property.
7x^{2}+3x-34=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 7\left(-34\right)}}{2\times 7}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\times 7\left(-34\right)}}{2\times 7}
Square 3.
x=\frac{-3±\sqrt{9-28\left(-34\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-3±\sqrt{9+952}}{2\times 7}
Multiply -28 times -34.
x=\frac{-3±\sqrt{961}}{2\times 7}
Add 9 to 952.
x=\frac{-3±31}{2\times 7}
Take the square root of 961.
x=\frac{-3±31}{14}
Multiply 2 times 7.
x=\frac{28}{14}
Now solve the equation x=\frac{-3±31}{14} when ± is plus. Add -3 to 31.
x=2
Divide 28 by 14.
x=-\frac{34}{14}
Now solve the equation x=\frac{-3±31}{14} when ± is minus. Subtract 31 from -3.
x=-\frac{17}{7}
Reduce the fraction \frac{-34}{14} to lowest terms by extracting and canceling out 2.
7x^{2}+3x-34=7\left(x-2\right)\left(x-\left(-\frac{17}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{17}{7} for x_{2}.
7x^{2}+3x-34=7\left(x-2\right)\left(x+\frac{17}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
7x^{2}+3x-34=7\left(x-2\right)\times \frac{7x+17}{7}
Add \frac{17}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
7x^{2}+3x-34=\left(x-2\right)\left(7x+17\right)
Cancel out 7, the greatest common factor in 7 and 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}