Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+2407x+61800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2407±\sqrt{2407^{2}-4\times 7\times 61800}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 2407 for b, and 61800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2407±\sqrt{5793649-4\times 7\times 61800}}{2\times 7}
Square 2407.
x=\frac{-2407±\sqrt{5793649-28\times 61800}}{2\times 7}
Multiply -4 times 7.
x=\frac{-2407±\sqrt{5793649-1730400}}{2\times 7}
Multiply -28 times 61800.
x=\frac{-2407±\sqrt{4063249}}{2\times 7}
Add 5793649 to -1730400.
x=\frac{-2407±23\sqrt{7681}}{2\times 7}
Take the square root of 4063249.
x=\frac{-2407±23\sqrt{7681}}{14}
Multiply 2 times 7.
x=\frac{23\sqrt{7681}-2407}{14}
Now solve the equation x=\frac{-2407±23\sqrt{7681}}{14} when ± is plus. Add -2407 to 23\sqrt{7681}.
x=\frac{-23\sqrt{7681}-2407}{14}
Now solve the equation x=\frac{-2407±23\sqrt{7681}}{14} when ± is minus. Subtract 23\sqrt{7681} from -2407.
x=\frac{23\sqrt{7681}-2407}{14} x=\frac{-23\sqrt{7681}-2407}{14}
The equation is now solved.
7x^{2}+2407x+61800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+2407x+61800-61800=-61800
Subtract 61800 from both sides of the equation.
7x^{2}+2407x=-61800
Subtracting 61800 from itself leaves 0.
\frac{7x^{2}+2407x}{7}=-\frac{61800}{7}
Divide both sides by 7.
x^{2}+\frac{2407}{7}x=-\frac{61800}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{2407}{7}x+\left(\frac{2407}{14}\right)^{2}=-\frac{61800}{7}+\left(\frac{2407}{14}\right)^{2}
Divide \frac{2407}{7}, the coefficient of the x term, by 2 to get \frac{2407}{14}. Then add the square of \frac{2407}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2407}{7}x+\frac{5793649}{196}=-\frac{61800}{7}+\frac{5793649}{196}
Square \frac{2407}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2407}{7}x+\frac{5793649}{196}=\frac{4063249}{196}
Add -\frac{61800}{7} to \frac{5793649}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2407}{14}\right)^{2}=\frac{4063249}{196}
Factor x^{2}+\frac{2407}{7}x+\frac{5793649}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2407}{14}\right)^{2}}=\sqrt{\frac{4063249}{196}}
Take the square root of both sides of the equation.
x+\frac{2407}{14}=\frac{23\sqrt{7681}}{14} x+\frac{2407}{14}=-\frac{23\sqrt{7681}}{14}
Simplify.
x=\frac{23\sqrt{7681}-2407}{14} x=\frac{-23\sqrt{7681}-2407}{14}
Subtract \frac{2407}{14} from both sides of the equation.