Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}+12x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 7\left(-2\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 12 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 7\left(-2\right)}}{2\times 7}
Square 12.
x=\frac{-12±\sqrt{144-28\left(-2\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-12±\sqrt{144+56}}{2\times 7}
Multiply -28 times -2.
x=\frac{-12±\sqrt{200}}{2\times 7}
Add 144 to 56.
x=\frac{-12±10\sqrt{2}}{2\times 7}
Take the square root of 200.
x=\frac{-12±10\sqrt{2}}{14}
Multiply 2 times 7.
x=\frac{10\sqrt{2}-12}{14}
Now solve the equation x=\frac{-12±10\sqrt{2}}{14} when ± is plus. Add -12 to 10\sqrt{2}.
x=\frac{5\sqrt{2}-6}{7}
Divide -12+10\sqrt{2} by 14.
x=\frac{-10\sqrt{2}-12}{14}
Now solve the equation x=\frac{-12±10\sqrt{2}}{14} when ± is minus. Subtract 10\sqrt{2} from -12.
x=\frac{-5\sqrt{2}-6}{7}
Divide -12-10\sqrt{2} by 14.
x=\frac{5\sqrt{2}-6}{7} x=\frac{-5\sqrt{2}-6}{7}
The equation is now solved.
7x^{2}+12x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}+12x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
7x^{2}+12x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
7x^{2}+12x=2
Subtract -2 from 0.
\frac{7x^{2}+12x}{7}=\frac{2}{7}
Divide both sides by 7.
x^{2}+\frac{12}{7}x=\frac{2}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{12}{7}x+\left(\frac{6}{7}\right)^{2}=\frac{2}{7}+\left(\frac{6}{7}\right)^{2}
Divide \frac{12}{7}, the coefficient of the x term, by 2 to get \frac{6}{7}. Then add the square of \frac{6}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{7}x+\frac{36}{49}=\frac{2}{7}+\frac{36}{49}
Square \frac{6}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{7}x+\frac{36}{49}=\frac{50}{49}
Add \frac{2}{7} to \frac{36}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{7}\right)^{2}=\frac{50}{49}
Factor x^{2}+\frac{12}{7}x+\frac{36}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{7}\right)^{2}}=\sqrt{\frac{50}{49}}
Take the square root of both sides of the equation.
x+\frac{6}{7}=\frac{5\sqrt{2}}{7} x+\frac{6}{7}=-\frac{5\sqrt{2}}{7}
Simplify.
x=\frac{5\sqrt{2}-6}{7} x=\frac{-5\sqrt{2}-6}{7}
Subtract \frac{6}{7} from both sides of the equation.