Evaluate
\frac{2914}{3}\approx 971.333333333
Factor
\frac{2 \cdot 31 \cdot 47}{3} = 971\frac{1}{3} = 971.3333333333334
Share
Copied to clipboard
42-\frac{40}{6}+6^{2}\left(8+18\right)
Multiply 7 and 6 to get 42.
42-\frac{20}{3}+6^{2}\left(8+18\right)
Reduce the fraction \frac{40}{6} to lowest terms by extracting and canceling out 2.
\frac{126}{3}-\frac{20}{3}+6^{2}\left(8+18\right)
Convert 42 to fraction \frac{126}{3}.
\frac{126-20}{3}+6^{2}\left(8+18\right)
Since \frac{126}{3} and \frac{20}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{106}{3}+6^{2}\left(8+18\right)
Subtract 20 from 126 to get 106.
\frac{106}{3}+36\left(8+18\right)
Calculate 6 to the power of 2 and get 36.
\frac{106}{3}+36\times 26
Add 8 and 18 to get 26.
\frac{106}{3}+936
Multiply 36 and 26 to get 936.
\frac{106}{3}+\frac{2808}{3}
Convert 936 to fraction \frac{2808}{3}.
\frac{106+2808}{3}
Since \frac{106}{3} and \frac{2808}{3} have the same denominator, add them by adding their numerators.
\frac{2914}{3}
Add 106 and 2808 to get 2914.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}