Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

7\times \frac{2\left(x-\sqrt{3}\right)}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{x+\sqrt{3}} by multiplying numerator and denominator by x-\sqrt{3}.
7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-3}
The square of \sqrt{3} is 3.
\frac{7\times 2\left(x-\sqrt{3}\right)}{x^{2}-3}
Express 7\times \frac{2\left(x-\sqrt{3}\right)}{x^{2}-3} as a single fraction.
\frac{14\left(x-\sqrt{3}\right)}{x^{2}-3}
Multiply 7 and 2 to get 14.
\frac{14x-14\sqrt{3}}{x^{2}-3}
Use the distributive property to multiply 14 by x-\sqrt{3}.