Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\sqrt{3}-\frac{5\sqrt{2}}{4\sqrt{3}}+\sqrt{18}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
7\sqrt{3}-\frac{5\sqrt{2}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}+\sqrt{18}
Rationalize the denominator of \frac{5\sqrt{2}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
7\sqrt{3}-\frac{5\sqrt{2}\sqrt{3}}{4\times 3}+\sqrt{18}
The square of \sqrt{3} is 3.
7\sqrt{3}-\frac{5\sqrt{6}}{4\times 3}+\sqrt{18}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
7\sqrt{3}-\frac{5\sqrt{6}}{12}+\sqrt{18}
Multiply 4 and 3 to get 12.
7\sqrt{3}-\frac{5\sqrt{6}}{12}+3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{12\left(7\sqrt{3}+3\sqrt{2}\right)}{12}-\frac{5\sqrt{6}}{12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7\sqrt{3}+3\sqrt{2} times \frac{12}{12}.
\frac{12\left(7\sqrt{3}+3\sqrt{2}\right)-5\sqrt{6}}{12}
Since \frac{12\left(7\sqrt{3}+3\sqrt{2}\right)}{12} and \frac{5\sqrt{6}}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{84\sqrt{3}+36\sqrt{2}-5\sqrt{6}}{12}
Do the multiplications in 12\left(7\sqrt{3}+3\sqrt{2}\right)-5\sqrt{6}.