Solve for x
x=72\sqrt{2}-1\approx 100.823376491
Graph
Share
Copied to clipboard
126\sqrt{2}-\left(x+1\right)=18\sqrt{18}
Multiply both sides of the equation by 18.
126\sqrt{2}-x-1=18\sqrt{18}
To find the opposite of x+1, find the opposite of each term.
126\sqrt{2}-x-1=18\times 3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
126\sqrt{2}-x-1=54\sqrt{2}
Multiply 18 and 3 to get 54.
-x-1=54\sqrt{2}-126\sqrt{2}
Subtract 126\sqrt{2} from both sides.
-x-1=-72\sqrt{2}
Combine 54\sqrt{2} and -126\sqrt{2} to get -72\sqrt{2}.
-x=-72\sqrt{2}+1
Add 1 to both sides.
-x=1-72\sqrt{2}
The equation is in standard form.
\frac{-x}{-1}=\frac{1-72\sqrt{2}}{-1}
Divide both sides by -1.
x=\frac{1-72\sqrt{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=72\sqrt{2}-1
Divide -72\sqrt{2}+1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}