Solve for x
x = -\frac{11}{10} = -1\frac{1}{10} = -1.1
Graph
Share
Copied to clipboard
14x-7-3\left(4x-1\right)=4\left(3x+2\right)-1
Use the distributive property to multiply 7 by 2x-1.
14x-7-12x+3=4\left(3x+2\right)-1
Use the distributive property to multiply -3 by 4x-1.
2x-7+3=4\left(3x+2\right)-1
Combine 14x and -12x to get 2x.
2x-4=4\left(3x+2\right)-1
Add -7 and 3 to get -4.
2x-4=12x+8-1
Use the distributive property to multiply 4 by 3x+2.
2x-4=12x+7
Subtract 1 from 8 to get 7.
2x-4-12x=7
Subtract 12x from both sides.
-10x-4=7
Combine 2x and -12x to get -10x.
-10x=7+4
Add 4 to both sides.
-10x=11
Add 7 and 4 to get 11.
x=\frac{11}{-10}
Divide both sides by -10.
x=-\frac{11}{10}
Fraction \frac{11}{-10} can be rewritten as -\frac{11}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}