Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{7}{2}x^{2}+21=14x^{2}
Use the distributive property to multiply 7 by \frac{1}{2}x^{2}+3.
\frac{7}{2}x^{2}+21-14x^{2}=0
Subtract 14x^{2} from both sides.
-\frac{21}{2}x^{2}+21=0
Combine \frac{7}{2}x^{2} and -14x^{2} to get -\frac{21}{2}x^{2}.
-\frac{21}{2}x^{2}=-21
Subtract 21 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-21\left(-\frac{2}{21}\right)
Multiply both sides by -\frac{2}{21}, the reciprocal of -\frac{21}{2}.
x^{2}=2
Multiply -21 and -\frac{2}{21} to get 2.
x=\sqrt{2} x=-\sqrt{2}
Take the square root of both sides of the equation.
\frac{7}{2}x^{2}+21=14x^{2}
Use the distributive property to multiply 7 by \frac{1}{2}x^{2}+3.
\frac{7}{2}x^{2}+21-14x^{2}=0
Subtract 14x^{2} from both sides.
-\frac{21}{2}x^{2}+21=0
Combine \frac{7}{2}x^{2} and -14x^{2} to get -\frac{21}{2}x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{21}{2}\right)\times 21}}{2\left(-\frac{21}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{21}{2} for a, 0 for b, and 21 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{21}{2}\right)\times 21}}{2\left(-\frac{21}{2}\right)}
Square 0.
x=\frac{0±\sqrt{42\times 21}}{2\left(-\frac{21}{2}\right)}
Multiply -4 times -\frac{21}{2}.
x=\frac{0±\sqrt{882}}{2\left(-\frac{21}{2}\right)}
Multiply 42 times 21.
x=\frac{0±21\sqrt{2}}{2\left(-\frac{21}{2}\right)}
Take the square root of 882.
x=\frac{0±21\sqrt{2}}{-21}
Multiply 2 times -\frac{21}{2}.
x=-\sqrt{2}
Now solve the equation x=\frac{0±21\sqrt{2}}{-21} when ± is plus.
x=\sqrt{2}
Now solve the equation x=\frac{0±21\sqrt{2}}{-21} when ± is minus.
x=-\sqrt{2} x=\sqrt{2}
The equation is now solved.