Evaluate
\frac{4}{7}\approx 0.571428571
Factor
\frac{2 ^ {2}}{7} = 0.5714285714285714
Share
Copied to clipboard
\frac{91+7}{13}-\left(\frac{5\times 7+3}{7}+\frac{1\times 13+7}{13}\right)
Multiply 7 and 13 to get 91.
\frac{98}{13}-\left(\frac{5\times 7+3}{7}+\frac{1\times 13+7}{13}\right)
Add 91 and 7 to get 98.
\frac{98}{13}-\left(\frac{35+3}{7}+\frac{1\times 13+7}{13}\right)
Multiply 5 and 7 to get 35.
\frac{98}{13}-\left(\frac{38}{7}+\frac{1\times 13+7}{13}\right)
Add 35 and 3 to get 38.
\frac{98}{13}-\left(\frac{38}{7}+\frac{13+7}{13}\right)
Multiply 1 and 13 to get 13.
\frac{98}{13}-\left(\frac{38}{7}+\frac{20}{13}\right)
Add 13 and 7 to get 20.
\frac{98}{13}-\left(\frac{494}{91}+\frac{140}{91}\right)
Least common multiple of 7 and 13 is 91. Convert \frac{38}{7} and \frac{20}{13} to fractions with denominator 91.
\frac{98}{13}-\frac{494+140}{91}
Since \frac{494}{91} and \frac{140}{91} have the same denominator, add them by adding their numerators.
\frac{98}{13}-\frac{634}{91}
Add 494 and 140 to get 634.
\frac{686}{91}-\frac{634}{91}
Least common multiple of 13 and 91 is 91. Convert \frac{98}{13} and \frac{634}{91} to fractions with denominator 91.
\frac{686-634}{91}
Since \frac{686}{91} and \frac{634}{91} have the same denominator, subtract them by subtracting their numerators.
\frac{52}{91}
Subtract 634 from 686 to get 52.
\frac{4}{7}
Reduce the fraction \frac{52}{91} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}