Evaluate
\frac{215}{24}\approx 8.958333333
Factor
\frac{5 \cdot 43}{2 ^ {3} \cdot 3} = 8\frac{23}{24} = 8.958333333333334
Share
Copied to clipboard
\frac{28+3}{4}-\frac{5}{8}+\frac{1\times 6+5}{6}
Multiply 7 and 4 to get 28.
\frac{31}{4}-\frac{5}{8}+\frac{1\times 6+5}{6}
Add 28 and 3 to get 31.
\frac{62}{8}-\frac{5}{8}+\frac{1\times 6+5}{6}
Least common multiple of 4 and 8 is 8. Convert \frac{31}{4} and \frac{5}{8} to fractions with denominator 8.
\frac{62-5}{8}+\frac{1\times 6+5}{6}
Since \frac{62}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{57}{8}+\frac{1\times 6+5}{6}
Subtract 5 from 62 to get 57.
\frac{57}{8}+\frac{6+5}{6}
Multiply 1 and 6 to get 6.
\frac{57}{8}+\frac{11}{6}
Add 6 and 5 to get 11.
\frac{171}{24}+\frac{44}{24}
Least common multiple of 8 and 6 is 24. Convert \frac{57}{8} and \frac{11}{6} to fractions with denominator 24.
\frac{171+44}{24}
Since \frac{171}{24} and \frac{44}{24} have the same denominator, add them by adding their numerators.
\frac{215}{24}
Add 171 and 44 to get 215.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}