Evaluate
\frac{181}{40}=4.525
Factor
\frac{181}{2 ^ {3} \cdot 5} = 4\frac{21}{40} = 4.525
Share
Copied to clipboard
\frac{35+2}{5}-\frac{2\times 8+7}{8}
Multiply 7 and 5 to get 35.
\frac{37}{5}-\frac{2\times 8+7}{8}
Add 35 and 2 to get 37.
\frac{37}{5}-\frac{16+7}{8}
Multiply 2 and 8 to get 16.
\frac{37}{5}-\frac{23}{8}
Add 16 and 7 to get 23.
\frac{296}{40}-\frac{115}{40}
Least common multiple of 5 and 8 is 40. Convert \frac{37}{5} and \frac{23}{8} to fractions with denominator 40.
\frac{296-115}{40}
Since \frac{296}{40} and \frac{115}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{181}{40}
Subtract 115 from 296 to get 181.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}