Evaluate
\frac{787}{200}=3.935
Factor
\frac{787}{2 ^ {3} \cdot 5 ^ {2}} = 3\frac{187}{200} = 3.935
Quiz
Arithmetic
5 problems similar to:
7 \frac { 1 } { 4 } + 2 \frac { 7 } { 10 } - 6 \frac { 3 } { 200 }
Share
Copied to clipboard
\frac{28+1}{4}+\frac{2\times 10+7}{10}-\frac{6\times 200+3}{200}
Multiply 7 and 4 to get 28.
\frac{29}{4}+\frac{2\times 10+7}{10}-\frac{6\times 200+3}{200}
Add 28 and 1 to get 29.
\frac{29}{4}+\frac{20+7}{10}-\frac{6\times 200+3}{200}
Multiply 2 and 10 to get 20.
\frac{29}{4}+\frac{27}{10}-\frac{6\times 200+3}{200}
Add 20 and 7 to get 27.
\frac{145}{20}+\frac{54}{20}-\frac{6\times 200+3}{200}
Least common multiple of 4 and 10 is 20. Convert \frac{29}{4} and \frac{27}{10} to fractions with denominator 20.
\frac{145+54}{20}-\frac{6\times 200+3}{200}
Since \frac{145}{20} and \frac{54}{20} have the same denominator, add them by adding their numerators.
\frac{199}{20}-\frac{6\times 200+3}{200}
Add 145 and 54 to get 199.
\frac{199}{20}-\frac{1200+3}{200}
Multiply 6 and 200 to get 1200.
\frac{199}{20}-\frac{1203}{200}
Add 1200 and 3 to get 1203.
\frac{1990}{200}-\frac{1203}{200}
Least common multiple of 20 and 200 is 200. Convert \frac{199}{20} and \frac{1203}{200} to fractions with denominator 200.
\frac{1990-1203}{200}
Since \frac{1990}{200} and \frac{1203}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{787}{200}
Subtract 1203 from 1990 to get 787.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}