Solve for x
x\leq \frac{41}{6}
Graph
Share
Copied to clipboard
3\left(7\times 2+1\right)-6x\geq 4
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3\left(14+1\right)-6x\geq 4
Multiply 7 and 2 to get 14.
3\times 15-6x\geq 4
Add 14 and 1 to get 15.
45-6x\geq 4
Multiply 3 and 15 to get 45.
-6x\geq 4-45
Subtract 45 from both sides.
-6x\geq -41
Subtract 45 from 4 to get -41.
x\leq \frac{-41}{-6}
Divide both sides by -6. Since -6 is negative, the inequality direction is changed.
x\leq \frac{41}{6}
Fraction \frac{-41}{-6} can be simplified to \frac{41}{6} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}