Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
\frac{14+1}{2}-\frac{\frac{3\times 4+1}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{2}{3}-\frac{1}{6}+\frac{1}{8}\right)}
Multiply 7 and 2 to get 14.
\frac{15}{2}-\frac{\frac{3\times 4+1}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{2}{3}-\frac{1}{6}+\frac{1}{8}\right)}
Add 14 and 1 to get 15.
\frac{15}{2}-\frac{\frac{12+1}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{2}{3}-\frac{1}{6}+\frac{1}{8}\right)}
Multiply 3 and 4 to get 12.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{2}{3}-\frac{1}{6}+\frac{1}{8}\right)}
Add 12 and 1 to get 13.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{4}{6}-\frac{1}{6}+\frac{1}{8}\right)}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{4-1}{6}+\frac{1}{8}\right)}
Since \frac{4}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{3}{6}+\frac{1}{8}\right)}
Subtract 1 from 4 to get 3.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{1}{2}+\frac{1}{8}\right)}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\left(\frac{4}{8}+\frac{1}{8}\right)}
Least common multiple of 2 and 8 is 8. Convert \frac{1}{2} and \frac{1}{8} to fractions with denominator 8.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\times \frac{4+1}{8}}
Since \frac{4}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1}{3}\times \frac{5}{8}}
Add 4 and 1 to get 5.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{1\times 5}{3\times 8}}
Multiply \frac{1}{3} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{3}{4}-\frac{5}{24}}
Do the multiplications in the fraction \frac{1\times 5}{3\times 8}.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{18}{24}-\frac{5}{24}}
Least common multiple of 4 and 24 is 24. Convert \frac{3}{4} and \frac{5}{24} to fractions with denominator 24.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{18-5}{24}}
Since \frac{18}{24} and \frac{5}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\frac{\frac{13}{4}}{\frac{13}{24}}
Subtract 5 from 18 to get 13.
\frac{15}{2}-\frac{13}{4}\times \frac{24}{13}
Divide \frac{13}{4} by \frac{13}{24} by multiplying \frac{13}{4} by the reciprocal of \frac{13}{24}.
\frac{15}{2}-\frac{13\times 24}{4\times 13}
Multiply \frac{13}{4} times \frac{24}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{2}-\frac{24}{4}
Cancel out 13 in both numerator and denominator.
\frac{15}{2}-6
Divide 24 by 4 to get 6.
\frac{15}{2}-\frac{12}{2}
Convert 6 to fraction \frac{12}{2}.
\frac{15-12}{2}
Since \frac{15}{2} and \frac{12}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}
Subtract 12 from 15 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}