Evaluate
\frac{161}{15}\approx 10.733333333
Factor
\frac{7 \cdot 23}{3 \cdot 5} = 10\frac{11}{15} = 10.733333333333333
Share
Copied to clipboard
\frac{84+1}{12}+\frac{1\times 5+2}{5}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Multiply 7 and 12 to get 84.
\frac{85}{12}+\frac{1\times 5+2}{5}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Add 84 and 1 to get 85.
\frac{85}{12}+\frac{5+2}{5}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Multiply 1 and 5 to get 5.
\frac{85}{12}+\frac{7}{5}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Add 5 and 2 to get 7.
\frac{425}{60}+\frac{84}{60}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Least common multiple of 12 and 5 is 60. Convert \frac{85}{12} and \frac{7}{5} to fractions with denominator 60.
\frac{425+84}{60}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Since \frac{425}{60} and \frac{84}{60} have the same denominator, add them by adding their numerators.
\frac{509}{60}+\frac{3\times 4+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Add 425 and 84 to get 509.
\frac{509}{60}+\frac{12+1}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Multiply 3 and 4 to get 12.
\frac{509}{60}+\frac{13}{4}-\left(\frac{1\times 2+1}{2}-\frac{1}{2}\right)
Add 12 and 1 to get 13.
\frac{509}{60}+\frac{13}{4}-\left(\frac{2+1}{2}-\frac{1}{2}\right)
Multiply 1 and 2 to get 2.
\frac{509}{60}+\frac{13}{4}-\left(\frac{3}{2}-\frac{1}{2}\right)
Add 2 and 1 to get 3.
\frac{509}{60}+\frac{13}{4}-\frac{3-1}{2}
Since \frac{3}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{509}{60}+\frac{13}{4}-\frac{2}{2}
Subtract 1 from 3 to get 2.
\frac{509}{60}+\frac{13}{4}-1
Divide 2 by 2 to get 1.
\frac{509}{60}+\frac{13}{4}-\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{509}{60}+\frac{13-4}{4}
Since \frac{13}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{509}{60}+\frac{9}{4}
Subtract 4 from 13 to get 9.
\frac{509}{60}+\frac{135}{60}
Least common multiple of 60 and 4 is 60. Convert \frac{509}{60} and \frac{9}{4} to fractions with denominator 60.
\frac{509+135}{60}
Since \frac{509}{60} and \frac{135}{60} have the same denominator, add them by adding their numerators.
\frac{644}{60}
Add 509 and 135 to get 644.
\frac{161}{15}
Reduce the fraction \frac{644}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}