Evaluate
\frac{560}{1209}\approx 0.463192721
Factor
\frac{2 ^ {4} \cdot 5 \cdot 7}{3 \cdot 13 \cdot 31} = 0.46319272125723737
Share
Copied to clipboard
\frac{7\times 20}{\frac{3\times 4+1}{4}\left(4\times 20+13\right)}
Divide \frac{7}{\frac{3\times 4+1}{4}} by \frac{4\times 20+13}{20} by multiplying \frac{7}{\frac{3\times 4+1}{4}} by the reciprocal of \frac{4\times 20+13}{20}.
\frac{140}{\frac{3\times 4+1}{4}\left(4\times 20+13\right)}
Multiply 7 and 20 to get 140.
\frac{140}{\frac{12+1}{4}\left(4\times 20+13\right)}
Multiply 3 and 4 to get 12.
\frac{140}{\frac{13}{4}\left(4\times 20+13\right)}
Add 12 and 1 to get 13.
\frac{140}{\frac{13}{4}\left(80+13\right)}
Multiply 4 and 20 to get 80.
\frac{140}{\frac{13}{4}\times 93}
Add 80 and 13 to get 93.
\frac{140}{\frac{13\times 93}{4}}
Express \frac{13}{4}\times 93 as a single fraction.
\frac{140}{\frac{1209}{4}}
Multiply 13 and 93 to get 1209.
140\times \frac{4}{1209}
Divide 140 by \frac{1209}{4} by multiplying 140 by the reciprocal of \frac{1209}{4}.
\frac{140\times 4}{1209}
Express 140\times \frac{4}{1209} as a single fraction.
\frac{560}{1209}
Multiply 140 and 4 to get 560.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}