Evaluate
\frac{77}{5}=15.4
Factor
\frac{7 \cdot 11}{5} = 15\frac{2}{5} = 15.4
Share
Copied to clipboard
7\times \frac{10+1}{5}+\frac{1}{2}-\frac{1}{3}-\frac{1}{6}
Multiply 2 and 5 to get 10.
7\times \frac{11}{5}+\frac{1}{2}-\frac{1}{3}-\frac{1}{6}
Add 10 and 1 to get 11.
\frac{7\times 11}{5}+\frac{1}{2}-\frac{1}{3}-\frac{1}{6}
Express 7\times \frac{11}{5} as a single fraction.
\frac{77}{5}+\frac{1}{2}-\frac{1}{3}-\frac{1}{6}
Multiply 7 and 11 to get 77.
\frac{154}{10}+\frac{5}{10}-\frac{1}{3}-\frac{1}{6}
Least common multiple of 5 and 2 is 10. Convert \frac{77}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{154+5}{10}-\frac{1}{3}-\frac{1}{6}
Since \frac{154}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
\frac{159}{10}-\frac{1}{3}-\frac{1}{6}
Add 154 and 5 to get 159.
\frac{477}{30}-\frac{10}{30}-\frac{1}{6}
Least common multiple of 10 and 3 is 30. Convert \frac{159}{10} and \frac{1}{3} to fractions with denominator 30.
\frac{477-10}{30}-\frac{1}{6}
Since \frac{477}{30} and \frac{10}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{467}{30}-\frac{1}{6}
Subtract 10 from 477 to get 467.
\frac{467}{30}-\frac{5}{30}
Least common multiple of 30 and 6 is 30. Convert \frac{467}{30} and \frac{1}{6} to fractions with denominator 30.
\frac{467-5}{30}
Since \frac{467}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{462}{30}
Subtract 5 from 467 to get 462.
\frac{77}{5}
Reduce the fraction \frac{462}{30} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}