Solve for I (complex solution)
I=-\frac{5x^{2}+10x+13}{7\left(x^{2}-1\right)}
x\neq 1\text{ and }x\neq -3\text{ and }x\neq -1
Solve for I
I=-\frac{5x^{2}+10x+13}{7\left(x^{2}-1\right)}
x\neq -3\text{ and }|x|\neq 1
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{49I^{2}-56I-40}+5}{7I+5}\text{, }&I\neq -\frac{5}{7}\\x=\frac{\sqrt{49I^{2}-56I-40}-5}{7I+5}\text{, }&I\neq -\frac{5}{7}\text{ and }I\neq -\frac{1}{2}\\x=-\frac{9}{5}\text{, }&I=-\frac{5}{7}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{49I^{2}-56I-40}+5}{7I+5}\text{, }&\left(I\neq -\frac{5}{7}\text{ and }I\leq \frac{4-2\sqrt{14}}{7}\right)\text{ or }I\geq \frac{2\sqrt{14}+4}{7}\\x=\frac{\sqrt{49I^{2}-56I-40}-5}{7I+5}\text{, }&I\geq \frac{2\sqrt{14}+4}{7}\text{ or }\left(I\neq -\frac{5}{7}\text{ and }I\leq \frac{4-2\sqrt{14}}{7}\text{ and }I\neq -\frac{1}{2}\right)\\x=-\frac{9}{5}\text{, }&I=-\frac{5}{7}\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{I+\frac{x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Divide both sides by 7.
\frac{\frac{I\left(x-1\right)}{x-1}+\frac{x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply I times \frac{x-1}{x-1}.
\frac{\frac{I\left(x-1\right)+x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Since \frac{I\left(x-1\right)}{x-1} and \frac{x+1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{Ix-I+x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Do the multiplications in I\left(x-1\right)+x+1.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2\left(x+1\right)}{x+1}-\frac{x-1}{x+1}}=\frac{2}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2\left(x+1\right)-\left(x-1\right)}{x+1}}=\frac{2}{7}
Since \frac{2\left(x+1\right)}{x+1} and \frac{x-1}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2x+2-x+1}{x+1}}=\frac{2}{7}
Do the multiplications in 2\left(x+1\right)-\left(x-1\right).
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{x+3}{x+1}}=\frac{2}{7}
Combine like terms in 2x+2-x+1.
\frac{\left(Ix-I+x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{2}{7}
Divide \frac{Ix-I+x+1}{x-1} by \frac{x+3}{x+1} by multiplying \frac{Ix-I+x+1}{x-1} by the reciprocal of \frac{x+3}{x+1}.
\frac{Ix^{2}-I+x^{2}+2x+1}{\left(x-1\right)\left(x+3\right)}=\frac{2}{7}
Use the distributive property to multiply Ix-I+x+1 by x+1 and combine like terms.
\frac{Ix^{2}-I+x^{2}+2x+1}{x^{2}+2x-3}=\frac{2}{7}
Use the distributive property to multiply x-1 by x+3 and combine like terms.
7\left(Ix^{2}-I+x^{2}+2x+1\right)=2\left(x-1\right)\left(x+3\right)
Multiply both sides of the equation by 7\left(x-1\right)\left(x+3\right), the least common multiple of x^{2}+2x-3,7.
7Ix^{2}-7I+7x^{2}+14x+7=2\left(x-1\right)\left(x+3\right)
Use the distributive property to multiply 7 by Ix^{2}-I+x^{2}+2x+1.
7Ix^{2}-7I+7x^{2}+14x+7=\left(2x-2\right)\left(x+3\right)
Use the distributive property to multiply 2 by x-1.
7Ix^{2}-7I+7x^{2}+14x+7=2x^{2}+4x-6
Use the distributive property to multiply 2x-2 by x+3 and combine like terms.
7Ix^{2}-7I+14x+7=2x^{2}+4x-6-7x^{2}
Subtract 7x^{2} from both sides.
7Ix^{2}-7I+14x+7=-5x^{2}+4x-6
Combine 2x^{2} and -7x^{2} to get -5x^{2}.
7Ix^{2}-7I+7=-5x^{2}+4x-6-14x
Subtract 14x from both sides.
7Ix^{2}-7I+7=-5x^{2}-10x-6
Combine 4x and -14x to get -10x.
7Ix^{2}-7I=-5x^{2}-10x-6-7
Subtract 7 from both sides.
7Ix^{2}-7I=-5x^{2}-10x-13
Subtract 7 from -6 to get -13.
\left(7x^{2}-7\right)I=-5x^{2}-10x-13
Combine all terms containing I.
\frac{\left(7x^{2}-7\right)I}{7x^{2}-7}=\frac{-5x^{2}-10x-13}{7x^{2}-7}
Divide both sides by 7x^{2}-7.
I=\frac{-5x^{2}-10x-13}{7x^{2}-7}
Dividing by 7x^{2}-7 undoes the multiplication by 7x^{2}-7.
I=-\frac{5x^{2}+10x+13}{7\left(x^{2}-1\right)}
Divide -13-10x-5x^{2} by 7x^{2}-7.
\frac{I+\frac{x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Divide both sides by 7.
\frac{\frac{I\left(x-1\right)}{x-1}+\frac{x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply I times \frac{x-1}{x-1}.
\frac{\frac{I\left(x-1\right)+x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Since \frac{I\left(x-1\right)}{x-1} and \frac{x+1}{x-1} have the same denominator, add them by adding their numerators.
\frac{\frac{Ix-I+x+1}{x-1}}{2-\frac{x-1}{x+1}}=\frac{2}{7}
Do the multiplications in I\left(x-1\right)+x+1.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2\left(x+1\right)}{x+1}-\frac{x-1}{x+1}}=\frac{2}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x+1}{x+1}.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2\left(x+1\right)-\left(x-1\right)}{x+1}}=\frac{2}{7}
Since \frac{2\left(x+1\right)}{x+1} and \frac{x-1}{x+1} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{2x+2-x+1}{x+1}}=\frac{2}{7}
Do the multiplications in 2\left(x+1\right)-\left(x-1\right).
\frac{\frac{Ix-I+x+1}{x-1}}{\frac{x+3}{x+1}}=\frac{2}{7}
Combine like terms in 2x+2-x+1.
\frac{\left(Ix-I+x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{2}{7}
Divide \frac{Ix-I+x+1}{x-1} by \frac{x+3}{x+1} by multiplying \frac{Ix-I+x+1}{x-1} by the reciprocal of \frac{x+3}{x+1}.
\frac{Ix^{2}-I+x^{2}+2x+1}{\left(x-1\right)\left(x+3\right)}=\frac{2}{7}
Use the distributive property to multiply Ix-I+x+1 by x+1 and combine like terms.
\frac{Ix^{2}-I+x^{2}+2x+1}{x^{2}+2x-3}=\frac{2}{7}
Use the distributive property to multiply x-1 by x+3 and combine like terms.
7\left(Ix^{2}-I+x^{2}+2x+1\right)=2\left(x-1\right)\left(x+3\right)
Multiply both sides of the equation by 7\left(x-1\right)\left(x+3\right), the least common multiple of x^{2}+2x-3,7.
7Ix^{2}-7I+7x^{2}+14x+7=2\left(x-1\right)\left(x+3\right)
Use the distributive property to multiply 7 by Ix^{2}-I+x^{2}+2x+1.
7Ix^{2}-7I+7x^{2}+14x+7=\left(2x-2\right)\left(x+3\right)
Use the distributive property to multiply 2 by x-1.
7Ix^{2}-7I+7x^{2}+14x+7=2x^{2}+4x-6
Use the distributive property to multiply 2x-2 by x+3 and combine like terms.
7Ix^{2}-7I+14x+7=2x^{2}+4x-6-7x^{2}
Subtract 7x^{2} from both sides.
7Ix^{2}-7I+14x+7=-5x^{2}+4x-6
Combine 2x^{2} and -7x^{2} to get -5x^{2}.
7Ix^{2}-7I+7=-5x^{2}+4x-6-14x
Subtract 14x from both sides.
7Ix^{2}-7I+7=-5x^{2}-10x-6
Combine 4x and -14x to get -10x.
7Ix^{2}-7I=-5x^{2}-10x-6-7
Subtract 7 from both sides.
7Ix^{2}-7I=-5x^{2}-10x-13
Subtract 7 from -6 to get -13.
\left(7x^{2}-7\right)I=-5x^{2}-10x-13
Combine all terms containing I.
\frac{\left(7x^{2}-7\right)I}{7x^{2}-7}=\frac{-5x^{2}-10x-13}{7x^{2}-7}
Divide both sides by 7x^{2}-7.
I=\frac{-5x^{2}-10x-13}{7x^{2}-7}
Dividing by 7x^{2}-7 undoes the multiplication by 7x^{2}-7.
I=-\frac{5x^{2}+10x+13}{7\left(x^{2}-1\right)}
Divide -5x^{2}-10x-13 by 7x^{2}-7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}