Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7^{3x}=117.649
Use the rules of exponents and logarithms to solve the equation.
\log(7^{3x})=\log(117.649)
Take the logarithm of both sides of the equation.
3x\log(7)=\log(117.649)
The logarithm of a number raised to a power is the power times the logarithm of the number.
3x=\frac{\log(117.649)}{\log(7)}
Divide both sides by \log(7).
3x=\log_{7}\left(117.649\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{-3\log_{7}\left(10\right)+6}{3}
Divide both sides by 3.