Solve for z
z=\frac{97}{259}\approx 0.374517375
Share
Copied to clipboard
7\left(9-56+7z\right)-9=9\left(7\left(9z-8\right)+6\right)-82
Use the distributive property to multiply -7 by 8-z.
7\left(-47+7z\right)-9=9\left(7\left(9z-8\right)+6\right)-82
Subtract 56 from 9 to get -47.
-329+49z-9=9\left(7\left(9z-8\right)+6\right)-82
Use the distributive property to multiply 7 by -47+7z.
-338+49z=9\left(7\left(9z-8\right)+6\right)-82
Subtract 9 from -329 to get -338.
-338+49z=9\left(63z-56+6\right)-82
Use the distributive property to multiply 7 by 9z-8.
-338+49z=9\left(63z-50\right)-82
Add -56 and 6 to get -50.
-338+49z=567z-450-82
Use the distributive property to multiply 9 by 63z-50.
-338+49z=567z-532
Subtract 82 from -450 to get -532.
-338+49z-567z=-532
Subtract 567z from both sides.
-338-518z=-532
Combine 49z and -567z to get -518z.
-518z=-532+338
Add 338 to both sides.
-518z=-194
Add -532 and 338 to get -194.
z=\frac{-194}{-518}
Divide both sides by -518.
z=\frac{97}{259}
Reduce the fraction \frac{-194}{-518} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}