Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

7\left(\frac{1}{4}+\frac{3}{4}\left(-\frac{2}{5}\right)\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
7\left(\frac{1}{4}+\frac{3\left(-2\right)}{4\times 5}\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Multiply \frac{3}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
7\left(\frac{1}{4}+\frac{-6}{20}\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Do the multiplications in the fraction \frac{3\left(-2\right)}{4\times 5}.
7\left(\frac{1}{4}-\frac{3}{10}\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{-6}{20} to lowest terms by extracting and canceling out 2.
7\left(\frac{5}{20}-\frac{6}{20}\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Least common multiple of 4 and 10 is 20. Convert \frac{1}{4} and \frac{3}{10} to fractions with denominator 20.
7\times \frac{5-6}{20}-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Since \frac{5}{20} and \frac{6}{20} have the same denominator, subtract them by subtracting their numerators.
7\left(-\frac{1}{20}\right)-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Subtract 6 from 5 to get -1.
\frac{7\left(-1\right)}{20}-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Express 7\left(-\frac{1}{20}\right) as a single fraction.
\frac{-7}{20}-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Multiply 7 and -1 to get -7.
-\frac{7}{20}-\frac{1}{3}\times \frac{6}{5}+\left(\frac{1}{2}\right)^{2}
Fraction \frac{-7}{20} can be rewritten as -\frac{7}{20} by extracting the negative sign.
-\frac{7}{20}+\frac{-6}{3\times 5}+\left(\frac{1}{2}\right)^{2}
Multiply -\frac{1}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{20}+\frac{-6}{15}+\left(\frac{1}{2}\right)^{2}
Do the multiplications in the fraction \frac{-6}{3\times 5}.
-\frac{7}{20}-\frac{2}{5}+\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{-6}{15} to lowest terms by extracting and canceling out 3.
-\frac{7}{20}-\frac{8}{20}+\left(\frac{1}{2}\right)^{2}
Least common multiple of 20 and 5 is 20. Convert -\frac{7}{20} and \frac{2}{5} to fractions with denominator 20.
\frac{-7-8}{20}+\left(\frac{1}{2}\right)^{2}
Since -\frac{7}{20} and \frac{8}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{-15}{20}+\left(\frac{1}{2}\right)^{2}
Subtract 8 from -7 to get -15.
-\frac{3}{4}+\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{-15}{20} to lowest terms by extracting and canceling out 5.
-\frac{3}{4}+\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{-3+1}{4}
Since -\frac{3}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{-2}{4}
Add -3 and 1 to get -2.
-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.