Solve for v
v = -\frac{40}{7} = -5\frac{5}{7} \approx -5.714285714
Share
Copied to clipboard
7\left(v+5\right)=-5
Variable v cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by v+5.
7v+35=-5
Use the distributive property to multiply 7 by v+5.
7v=-5-35
Subtract 35 from both sides.
7v=-40
Subtract 35 from -5 to get -40.
v=\frac{-40}{7}
Divide both sides by 7.
v=-\frac{40}{7}
Fraction \frac{-40}{7} can be rewritten as -\frac{40}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}