Solve for f
f=-7x^{4}
x\neq 0
Solve for x (complex solution)
x=\sqrt{2}\times 7^{\frac{3}{4}}\left(-\frac{1}{14}+\frac{1}{14}i\right)\sqrt[4]{f}
x=\sqrt{2}\times 7^{\frac{3}{4}}\left(\frac{1}{14}+\frac{1}{14}i\right)\sqrt[4]{f}
x=\sqrt{2}\times 7^{\frac{3}{4}}\left(-\frac{1}{14}-\frac{1}{14}i\right)\sqrt[4]{f}
x=\sqrt{2}\times 7^{\frac{3}{4}}\left(\frac{1}{14}-\frac{1}{14}i\right)\sqrt[4]{f}\text{, }f\neq 0
Solve for x
x=\frac{7^{\frac{3}{4}}\sqrt[4]{-f}}{7}
x=-\frac{7^{\frac{3}{4}}\sqrt[4]{-f}}{7}\text{, }f<0
Graph
Share
Copied to clipboard
8\times 7x=\frac{1}{8}x\left(-8\right)fx^{-4}\times 8
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8f, the least common multiple of f,8.
56x=\frac{1}{8}x\left(-8\right)fx^{-4}\times 8
Multiply 8 and 7 to get 56.
56x=\frac{1}{8}x^{-3}\left(-8\right)f\times 8
To multiply powers of the same base, add their exponents. Add 1 and -4 to get -3.
56x=-x^{-3}f\times 8
Multiply \frac{1}{8} and -8 to get -1.
56x=-8x^{-3}f
Multiply -1 and 8 to get -8.
-8x^{-3}f=56x
Swap sides so that all variable terms are on the left hand side.
\left(-\frac{8}{x^{3}}\right)f=56x
The equation is in standard form.
\frac{\left(-\frac{8}{x^{3}}\right)f}{-\frac{8}{x^{3}}}=\frac{56x}{-\frac{8}{x^{3}}}
Divide both sides by -8x^{-3}.
f=\frac{56x}{-\frac{8}{x^{3}}}
Dividing by -8x^{-3} undoes the multiplication by -8x^{-3}.
f=-7x^{4}
Divide 56x by -8x^{-3}.
f=-7x^{4}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}