Solve for y
y=\frac{2x^{3}}{7\left(x-1\right)^{2}}
x\neq 1
Graph
Share
Copied to clipboard
\frac{7}{2}y\times 2\left(x-1\right)^{2}=2x^{3}
Multiply both sides of the equation by 2\left(x-1\right)^{2}, the least common multiple of 2,\left(1-x\right)^{2}.
7y\left(x-1\right)^{2}=2x^{3}
Multiply \frac{7}{2} and 2 to get 7.
7y\left(x^{2}-2x+1\right)=2x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
7yx^{2}-14xy+7y=2x^{3}
Use the distributive property to multiply 7y by x^{2}-2x+1.
\left(7x^{2}-14x+7\right)y=2x^{3}
Combine all terms containing y.
\frac{\left(7x^{2}-14x+7\right)y}{7x^{2}-14x+7}=\frac{2x^{3}}{7x^{2}-14x+7}
Divide both sides by 7-14x+7x^{2}.
y=\frac{2x^{3}}{7x^{2}-14x+7}
Dividing by 7-14x+7x^{2} undoes the multiplication by 7-14x+7x^{2}.
y=\frac{2x^{3}}{7\left(x-1\right)^{2}}
Divide 2x^{3} by 7-14x+7x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}