Evaluate
42-24\sqrt{3}\approx 0.430780618
Expand
42-24\sqrt{3}
Share
Copied to clipboard
\frac{7}{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{7}{4+4\sqrt{3}+3}-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\frac{7}{7+4\sqrt{3}}-\left(2-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
\frac{7\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}-\left(2-\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{7}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{7\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Calculate 7 to the power of 2 and get 49.
\frac{7\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{7\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Calculate 4 to the power of 2 and get 16.
\frac{7\left(7-4\sqrt{3}\right)}{49-16\times 3}-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\frac{7\left(7-4\sqrt{3}\right)}{49-48}-\left(2-\sqrt{3}\right)^{2}
Multiply 16 and 3 to get 48.
\frac{7\left(7-4\sqrt{3}\right)}{1}-\left(2-\sqrt{3}\right)^{2}
Subtract 48 from 49 to get 1.
7\left(7-4\sqrt{3}\right)-\left(2-\sqrt{3}\right)^{2}
Anything divided by one gives itself.
49-28\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
Use the distributive property to multiply 7 by 7-4\sqrt{3}.
49-28\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
49-28\sqrt{3}-\left(4-4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
49-28\sqrt{3}-\left(7-4\sqrt{3}\right)
Add 4 and 3 to get 7.
49-28\sqrt{3}-7+4\sqrt{3}
To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
42-28\sqrt{3}+4\sqrt{3}
Subtract 7 from 49 to get 42.
42-24\sqrt{3}
Combine -28\sqrt{3} and 4\sqrt{3} to get -24\sqrt{3}.
\frac{7}{4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{7}{4+4\sqrt{3}+3}-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\frac{7}{7+4\sqrt{3}}-\left(2-\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
\frac{7\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}-\left(2-\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{7}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\frac{7\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Calculate 7 to the power of 2 and get 49.
\frac{7\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{7\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}-\left(2-\sqrt{3}\right)^{2}
Calculate 4 to the power of 2 and get 16.
\frac{7\left(7-4\sqrt{3}\right)}{49-16\times 3}-\left(2-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\frac{7\left(7-4\sqrt{3}\right)}{49-48}-\left(2-\sqrt{3}\right)^{2}
Multiply 16 and 3 to get 48.
\frac{7\left(7-4\sqrt{3}\right)}{1}-\left(2-\sqrt{3}\right)^{2}
Subtract 48 from 49 to get 1.
7\left(7-4\sqrt{3}\right)-\left(2-\sqrt{3}\right)^{2}
Anything divided by one gives itself.
49-28\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
Use the distributive property to multiply 7 by 7-4\sqrt{3}.
49-28\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{3}\right)^{2}.
49-28\sqrt{3}-\left(4-4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
49-28\sqrt{3}-\left(7-4\sqrt{3}\right)
Add 4 and 3 to get 7.
49-28\sqrt{3}-7+4\sqrt{3}
To find the opposite of 7-4\sqrt{3}, find the opposite of each term.
42-28\sqrt{3}+4\sqrt{3}
Subtract 7 from 49 to get 42.
42-24\sqrt{3}
Combine -28\sqrt{3} and 4\sqrt{3} to get -24\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}