Evaluate
\frac{25}{3}\approx 8.333333333
Factor
\frac{5 ^ {2}}{3} = 8\frac{1}{3} = 8.333333333333334
Share
Copied to clipboard
7+14+\frac{-3}{2!}\times 4+\frac{-5}{3!}\times 2^{3}
Multiply 7 and 2 to get 14.
21+\frac{-3}{2!}\times 4+\frac{-5}{3!}\times 2^{3}
Add 7 and 14 to get 21.
21+\frac{-3}{2}\times 4+\frac{-5}{3!}\times 2^{3}
The factorial of 2 is 2.
21-\frac{3}{2}\times 4+\frac{-5}{3!}\times 2^{3}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
21+\frac{-3\times 4}{2}+\frac{-5}{3!}\times 2^{3}
Express -\frac{3}{2}\times 4 as a single fraction.
21+\frac{-12}{2}+\frac{-5}{3!}\times 2^{3}
Multiply -3 and 4 to get -12.
21-6+\frac{-5}{3!}\times 2^{3}
Divide -12 by 2 to get -6.
15+\frac{-5}{3!}\times 2^{3}
Subtract 6 from 21 to get 15.
15+\frac{-5}{6}\times 2^{3}
The factorial of 3 is 6.
15-\frac{5}{6}\times 2^{3}
Fraction \frac{-5}{6} can be rewritten as -\frac{5}{6} by extracting the negative sign.
15-\frac{5}{6}\times 8
Calculate 2 to the power of 3 and get 8.
15+\frac{-5\times 8}{6}
Express -\frac{5}{6}\times 8 as a single fraction.
15+\frac{-40}{6}
Multiply -5 and 8 to get -40.
15-\frac{20}{3}
Reduce the fraction \frac{-40}{6} to lowest terms by extracting and canceling out 2.
\frac{45}{3}-\frac{20}{3}
Convert 15 to fraction \frac{45}{3}.
\frac{45-20}{3}
Since \frac{45}{3} and \frac{20}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{3}
Subtract 20 from 45 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}