Solve for a
a = \frac{15}{7} = 2\frac{1}{7} \approx 2.142857143
Share
Copied to clipboard
7+4a=7a-8-\left(-4a\right)
To find the opposite of 8-4a, find the opposite of each term.
7+4a=7a-8+4a
The opposite of -4a is 4a.
7+4a=11a-8
Combine 7a and 4a to get 11a.
7+4a-11a=-8
Subtract 11a from both sides.
7-7a=-8
Combine 4a and -11a to get -7a.
-7a=-8-7
Subtract 7 from both sides.
-7a=-15
Subtract 7 from -8 to get -15.
a=\frac{-15}{-7}
Divide both sides by -7.
a=\frac{15}{7}
Fraction \frac{-15}{-7} can be simplified to \frac{15}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}