Solve for x
x = \frac{\sqrt{29} + 15}{2} \approx 10.192582404
Graph
Share
Copied to clipboard
\sqrt{x}=x-7
Subtract 7 from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(x-7\right)^{2}
Square both sides of the equation.
x=\left(x-7\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}-14x+49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x-x^{2}=-14x+49
Subtract x^{2} from both sides.
x-x^{2}+14x=49
Add 14x to both sides.
15x-x^{2}=49
Combine x and 14x to get 15x.
15x-x^{2}-49=0
Subtract 49 from both sides.
-x^{2}+15x-49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\left(-1\right)\left(-49\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 15 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-1\right)\left(-49\right)}}{2\left(-1\right)}
Square 15.
x=\frac{-15±\sqrt{225+4\left(-49\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-15±\sqrt{225-196}}{2\left(-1\right)}
Multiply 4 times -49.
x=\frac{-15±\sqrt{29}}{2\left(-1\right)}
Add 225 to -196.
x=\frac{-15±\sqrt{29}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{29}-15}{-2}
Now solve the equation x=\frac{-15±\sqrt{29}}{-2} when ± is plus. Add -15 to \sqrt{29}.
x=\frac{15-\sqrt{29}}{2}
Divide -15+\sqrt{29} by -2.
x=\frac{-\sqrt{29}-15}{-2}
Now solve the equation x=\frac{-15±\sqrt{29}}{-2} when ± is minus. Subtract \sqrt{29} from -15.
x=\frac{\sqrt{29}+15}{2}
Divide -15-\sqrt{29} by -2.
x=\frac{15-\sqrt{29}}{2} x=\frac{\sqrt{29}+15}{2}
The equation is now solved.
7+\sqrt{\frac{15-\sqrt{29}}{2}}=\frac{15-\sqrt{29}}{2}
Substitute \frac{15-\sqrt{29}}{2} for x in the equation 7+\sqrt{x}=x.
\frac{13}{2}+\frac{1}{2}\times 29^{\frac{1}{2}}=\frac{15}{2}-\frac{1}{2}\times 29^{\frac{1}{2}}
Simplify. The value x=\frac{15-\sqrt{29}}{2} does not satisfy the equation.
7+\sqrt{\frac{\sqrt{29}+15}{2}}=\frac{\sqrt{29}+15}{2}
Substitute \frac{\sqrt{29}+15}{2} for x in the equation 7+\sqrt{x}=x.
\frac{15}{2}+\frac{1}{2}\times 29^{\frac{1}{2}}=\frac{1}{2}\times 29^{\frac{1}{2}}+\frac{15}{2}
Simplify. The value x=\frac{\sqrt{29}+15}{2} satisfies the equation.
x=\frac{\sqrt{29}+15}{2}
Equation \sqrt{x}=x-7 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}